NEW Pd(II) FLUORIDES

Bernd G. Müller

Inst. f. Anorg. u. Analyt. Chemie der JLU, Heinr.-Buff-Ring 58, Giessen (F.R.G.)

Single crystals of $CsPd_2F_5$ (orange-brown, $Imma-D_{2h}^{28}$, No. 74; Z = 2; a = 6.53_3 , b = 7.86_2 , c = 10.79 Å) have been obtained (instead of 'CsPdF_5') by heating mixtures of CsF and PdF₂ (ratio 1:1) in sealed gold tubes (under dry Ar) up to t $\approx 600^{\circ}C$ (20-30 d). The structure is related close-ly to the CsAgFeFe-type of structure [1], but, because of the 'absence' of one F⁻, one half of the Pd²⁺-ions is coordinated planar quadratically, the other half octehedrally. From Guinier data are isotypic MeIPd₂F₅ (MeI = K, Rb, Tl), brown and CsMeIIPdF₅ (MeII = Zn, Cd, Ni, Co, Mg), brown or yellow. Under similar conditions single crystals of Rb₃PdF₅ (yellow, P4/mbm-D⁵, No. 127; Z = 2, a = 7.46_7 , c = 6.49_7 Å) have been obtained (instead of 'Rb₂PdF4') by heating mixtures of RbF and PdF₂ (ratio 2:1) in sealed gold tubes (under dry Ar) up to t $\approx 560^{\circ}C$ (20-30 d). The coordinationnumber of Pd²⁺ is C.N. = 4 (planar quadratic). Isotypic are (single crystal data) Cs₃PdF₅, Rb₂CsPdF₅ (with ordered distribution of Rb, Cs) and K₃PdF₅, all yellow.

1 Bernd G. Müller, Journal of Fluorine Chemistry, <u>17</u>, 317-329 (1981)

I-54

BINUCLEAR AND HETEROBINUCLEAR FLUOROOXO COMPLEXES OF VANADIUM AND MOLYBDENUM WITH THE Cs₃Fe₂F₉ STRUCTURE

Rainer Mattes and Harry Förster

Institute of Inorganic Chemistry, University of Muenster, 4400 Muenster (F.R.G.)

Cs3Mo2O₆F₃, Cs₃V₂O₄F₅ and Cs₃V₂O₂F₇ crystallize in the hexagonal Cs₃Fe₂F₉ structure. The structure can be described in terms of close packed Cs(0,F)₃ layers, where the octahedral sites in two adjacent layers are filled with the transition metal ions, so forming face shared bioctahedral M₂(0,F)₉ units. Single crystal X-ray data are unable to distinguish between fluorine and oxygen atoms. Therefore no information can be obtained, whether oxygen or fluorine atoms occupy terminal or bridging positions in the M₂(0,F)₉ units. Infrared and Raman spectra of these compounds, however, prove that oxygen and fluorine atoms are randomly distributed over all layers in Cs₂Mo₂O₆F₂ and in Cs₃V₂O₄F₅ leading to the predominant species [O₂FMO₂FMO₂FJ₂² and, by a random distribution of the vanadium atoms as well, to the fluorine bridged anion [O₂FVF₂VO₂F]³⁻. Cs₃V₂O₂F₇ contains the anion [OF₂VF₂VF₂O]³⁻ with a statistical distribution of the compounds Cs₃Mo₂V_{2-x}O_{x+4}F_{5-x} and Cs₃Mo_xV_{2-x}O₂₊₂F_{7-2x} containing hetero binuclear anions have allos been prepared. In both substances the oxygen atoms occupy terminal and bridging positions.